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The fluctuations of the "microscopic free energy" calculated with the 
ensemble probability are shown to be zero. We suggest that this result be 
used for estimating approximate free energies calculated on the basis of 
the minimum free energy principle. As an example the estimation is 
performed with respect to a certain computer simulation of the square 
Ising lattice. The zero fluctuations also can be used to obtain relations 
among fluctuations with the accurate ensemble probability distribution. 
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We consider  a system in equi l ibr ium which can be descr ibed by  the canonical  
d is t r ibut ion ,  e.g., the p robab i l i ty  Pi o f  the i th conf igurat ion is given by  

P,  = Z -1 e x p ( -  E,[kT) (1) 

where E~ is its microscopic  energy, Z is the par t i t ion  funct ion,  k is the Boltz- 
mann  constant ,  and  T is the absolu te  tempera ture .  

The Helmhol tz  free energy F is 

F = ~ e,(e, + ~Tloge0 (2) 

all configurations 

Here  F is expressed as the stat ist ical  average of  the " m i c r o s c o p i c  free ene rgy"  
F,: 

F~ -- E~ + k T l o g  P,  (3) 

1 Polymer Department, Weizmann Institute of Science, Rehovot, Israel. 

123 

�9 1976 Plenum Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011. No part oft_his publica- 
tion may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, 
mechanical, photocopying, microfilming, recording, or otherwise, without written permission of  the publisher. 



124 Hagai Meirovitch and Z. Alexandrowicz 

By substituting Eq. (1) into (3) we obtain for all i 

F, = E, + k T [ - ( E d k T )  - logZ]  = - k T l o g Z  (4) 

Therefore F, is a constant function defined on phase space, 

F, = F (5) 

which means that F has zero fluctuations: 

(AF 2) = 0 (6) 

where (AF 2) stands for the variance of F. By a similar treatment the same 
result is ol~tained for the corresponding free energies in the other ensembles 
and for the entropy in the mierocanonical ensemble. This property of zero 
fluctuations appears to be ignored by most textbooks of statistical mechan- 
ics. (1'2~'2 We point it out here not only in view of its theoretical interest 
but also because certain applications can be derived from it, as described 
in what follows. In this context let us recall the well-known minimum free 
energy principle, (2,s~ which states that the free energy functional F(P'), 

F(P')  = ~ P((E,  + kTlog P() (7) 
i 

is never smaller than the true F, defined with the Boltzmann distribution 
[Eq. (1)]. i n  Eq. (7), P' is any probability distribution (PD) defined on phase 
space. For such P', (AF2(P')) and (AE2(P')~'denote the free energy and 
energy fluctuations, respectively. Many approximate methods in statistical 
mechanics are based on the minimum value principle, trying to minimize 
F(P'), with respect to P', under restrictions imposed by the approximations. 
The various thermodynamic quantities can be calculated in such a manner, 
but their accuracy cannot be estimated. For that purpose we suggest to use 
the property of zero fluctuation in F. First, however, we have to stress that 
the equation (AF2(P')) = 0 provides a sufficient condition for determining 
the exact equilibrium distribution, i.e., Boltzmann's distribution, but only 
for P' that do not exclude part of phase space. [Any PD that excludes part 
of phase space and preserves the condition P~' ~ e x p ( - E d k T )  for the rest 
of the space will likewise give (AF2(P')) = 0,] For that reason one can en- 
visage PDs that effectively exclude part of phase space while giving almost 
constant probability to the rest of it, with the result that (AF2(P')) is very 
small, although F(P') is far from true! In that case, however, (AE2(P')) 
will also be small. The above indicates that caution is needed in the use of 
(AF2(P')) = 0. For our purposes, we need a quantity having strong positive 
correlation with F(P'). Therefore, a reasonable choice seems to be the ratio 

A = ( A 2 F ( p ' ) ) / ( A 2 E ( p ' ) )  (8) 

2 In  Ref. 1, To lman  calculates the  free energy fluctuations with the Gaussian approxi-  
ma t ion  and obtains ( A F  z) = (kT/2) 2, which practically means  it is zero. In  Ref. 2, 
Gibbs  derives Eq.  (4), but  wi thout  relating it to fluctuations. 
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rather than (A2F(P')) alone. Using Eq. (8), we shall estimate the accuracy 
of  a value of the free energy calculated with the help or a particular method. 
In principle, such an estimation can be extended to other approximate 
methods as well. 

The particular approximate method has been described previously (4~ 
and here it will be applied to the square Ising lattice consisting of  L x L 
spins. The method strives to sample the equilibrium lattice configurations 
for a given temperature T. Sampling of  the lattice configurations is carried 
out by a stochastic construction procedure: One begins with an empty lattice 
(only the first row has spins). The spins' orientation is fixed step by step 
by a Monte Carlo lottery, according to a set of parametrized transition 
probabilities that depend on the orientation of the last L spins. After per- 
forming this construction, one knows the microscopic energy of the configura- 
tion E~ and its probability P~, which is the product of  L 2 transition proba- 
bilities of  the construction. Thus the procedure defines a probability distribu- 
tion P(x) of  all configurations for a particular choice of  a set of parameters 
x. We sample many configurations with P(x) computing the average value 
of  the corresponding free energy functional F(x) [see Eq. (7)]: 

F(x) = ~ P,(x)[E~ + kTlogP~(x)] (9) 

We seek the optimal set of parameters (x*) giving the minimum value for 
the related free energy F(x*); for these "bes t "  values we compute the 
average energy and other average lattice quantities of interest. 

To estimate the accuracy in F(x*), we choose sets of parameters x 
different from the optimal x* and calculate the related averages and fluctua- 
tions; these are plotted as F(x) vs. A in Fig. 1. Each type of symbol in the 
figure represents the variation of  one parameter, e.g., a short-range or a 
long-range parameter (for details see elsewhere ~5~) while the rest of the set x* 
is kept constant. The plots show a strong correlation between F(x) and A, 
which can be represented by a smooth line describing the variation of the 
various parameters. We are interested, of course, in the intersection of the 
line with the F axis, which should give the accurate F. In order to estimate 
this point, we have to assume that the behavior of the curve remains un- 
changed as A ~ 0, i.e., it describes a monotonic decreasing concave function. 
With these assumptions, one can plot the tangent to the curve at its lowest 
point; the accurate free energy can be only larger than or equal to the inter- 
section of this tangent with the F axis. 

In Fig. 1 the quantities have been calculated for the Ising reciprocal 
temperature J/kT = 0.45. The tangent intersects the free energy axis at the 
value 0.9437. The best value F(x*) for this temperature is 0.94325. The 
conclusion is that the first three digits in F(x*) are certainly accurate. For 
comparison, the accurate free energy is 0.9433636) 
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Fig. 1. A plot of A = <AF2>/<AE2> vs. F/NkT  for reciprocal Ising temperature 
K = 0.45. (0)  The short-range parameter is decreased from its optimal value. ( x ) The 
same parameter is increased from its optimal value. (m) The long-range order parameter 
is decreased. (O) All parameters are decreased from their optimal values. The dashed 
line is the tangent at the lowest point of the best fit curve. 

Another  aspect worth mentioning is the following: Relations between 
fluctuations in the various thermodynamic  quantities can be obtained with 
the Gaussian approximation (1'7) and in an accurate way, (8) using the Boltz- 
mann distribution, which is often tedious. The property o f  zero fluctuations 
in F enables one to derive easily such relations in an accurate way. As an ex- 
ample, we shall calculate the fluctuations ( A S  2) in entropy. 

( A F  2) = ( [E  - T S  - ( ( e )  - T(S)) ]  ~) = 

( A E  2) + T 2 ( A S  z)  - 2 T ( ( E S )  - ( E ) ( S ) )  (10) 

The averages in the last term of  (10) can be computed directly with the help 
of  Eq. (1) for P~, where entropy is - k ( l o g P ) ;  this gives 

( & F  z) = T a ( A S  2) - ( A E  z) (11) 

Since ( A F  z) = 0 we obtain 

T 2 ( A S  2) = ( A E  2) (12) 
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